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A New Locus for Nonsyndromic Hereditary Hearing
Impairment, DFNA17, Maps to Chromosome 22 and
Represents a Gene for Cochleosaccular Degeneration

To the Editor:

Over the past several decades, the proportion of the
population with hearing impairment attributed to ge-
netic factors has increased as modern medicine has be-
come both more adept at controlling maternal and
pediatric infections and better educated about the
iatrogenic causes of hearing impairment. At present, as
much as one-half of all congenital hearing impairment
is considered to have an underlying genetic component
(Arnos et al. 1992; Brookhouser 1994; Cohen and Gor-
lin 1995; Fraser 1995), making hereditary hearing im-
pairment (HHI) one of the most common inherited hu-
man deficits.

Cochleosaccular degeneration (CSD) is the most com-
mon histopathologic finding in cases of profound con-
genital HHI. It is estimated to occur in ~70% of cases
(Ormerod 1960; Bergstrom 1980; Gulya and Juhlin
1992). CSD was described first by Scheibe in 1892 and
is more commonly known as “Scheibe dysplasia.” It af-
fects structures that are derived from the pars inferior
of the otocyst. Thus, the membranous cochlea and sac-
cule are affected, but the osseous labyrinth, the mem-
branous utricle, and the semicircular canals are normal.

Because there is no clinically available test to diagnose
CSD, postmortem histologic examination of the tem-
poral bone is required. The histopathology of CSD is
characterized by a loss of neurosensory hair cells and
their supporting cells in the cochleae and sacculae. Coch-
lear and vestibular nerve atrophy varies and ranges from
none to severe. Reissner’s membrane and the saccu-
lar wall are typically collapsed. The stria vascularis
is atrophic with inclusion of abnormal periodic acid-
Schiff-positive material. The pathology in the cochlea is
typically most severe in the basal turn, with progressive
preservation of normal architecture toward the apex.
Occasionally, endolymphatic hydrops is present, indi-
cating a disturbance in ionic and osmotic regulation.

Although CSD is relatively common, its molecular

318

pathogenesis remains to be deciphered. Genetic analysis
of families with HHI associated with CSD represents a
potential route toward identification of genes responsi-
ble for intact and functional membranous structures
within the cochlea. First, histopathology offers physical
evidence of the specific tissues that the disease gene af-
fects. Second, it may provide clues to the functions of
the mutant gene. Finally, animals with similar histopa-
thology serve as excellent models for CSD-associated
hearing impairment. Previously, no nonsyndromic HHI
loci had been associated with CSD, and, with the ex-
ception of the DFNA9 locus, there were no nonsyn-
dromic HHI loci that had been both genetically mapped
and histologically characterized (Manolis et al. 1996).

Here we present the first reported mapping of a gene
responsible for CSD. The family transmitting this mu-
tant gene is a previously described, multigenerational,
nonconsanguineous American family with autosomal
dominant HHI (Lalwani et al. 1997).

The family studied was identified through the tem-
poral-bone database at the House Ear Institute in Los
Angeles. Institutional-review-board approval was ob-
tained for the human-research protocols from the House
Ear Institute and the National Institute on Deafness and
from Other Communication Disorders at the National
Institutes of Health. Eighteen members of the family
were enrolled in the study, of whom eight are affected.
Extensive medical histories were obtained, and audiolog-
ical evaluations were performed as described elsewhere
(Lalwani et al. 1997). In addition, temporal bones and
the brain stem, removed at autopsy from the proband,
were analyzed as described elsewhere (Lalwani et al.
1997).

The family has been described in detail previously
(Lalwani et al. 1997). In summary, the affected family
members exhibit nonsyndromic HHI with an autosomal
dominant mode of transmission; there was no pigmen-
tary abnormality in any of the affected individuals. Ini-
tially, the hearing impairment would begin at age 10
years and would involve only the high frequencies; by
the 3d decade of life, affected family members had mod-
erate to severe deafness. Histologic examination of the
proband’s temporal bone exhibited classic CSD, with
degeneration of the organ of Corti, the saccular epithe-
lium, and the stria vascularis. In addition, there was
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asymptomatic loss of neurons and gliosis in the inferior
olivary nucleus.

Genomic DNA was extracted from whole blood by
standard phenol extraction. Samples were quantified by
spectrophotometry and were diluted to 25 ng/ul, for am-
plification by PCR. A 10-cM genome scan was produced
with the ABI Prism Linkage Mapping Set, version 1.0
(PE Applied Biosystems), consisting of fluorescently la-
beled markers detecting microsatellite polymorphisms
(Weber and May 1989; Reed et al. 1994). Fine mapping
was accomplished with fluorescently labeled MapPairs
from Research Genetics.

PCR used 50 ng of genomic DNA in a 10-ul reaction.
The final reaction consisted of 1 x PCR Perkin-Elmer
buffer; 2 pmol of fluorescently labeled forward primer;
2 pmol of reverse primer; 50 uM each of dCTP, dGTP,
dTTP, and dATP; 2.0 mM MgCl,; and 0.25 U of
AmpliTag Gold DNA Polymerase (PE Applied Biosys-
tems). Reactions were started, at 95°C for 12 min, to
activate the polymerase. Thirty-four cycles of amplifi-
cation were completed in the following protocol: 94°C
for 45 s, 57°C for 45 s, and 72°C for 60 s. Samples were
maintained at 72°C for 10 min, for extension. Products
were resolved on 4.25% denaturing polyacrylamide gels
(6 M urea) and were visualized on a 377 prism (PE
Applied Biosystems).

The FASTLINK program package enabled calculation
of two-point and multipoint LOD scores over the entire
genome (Cottingham et al. 1993; Schiffer et al. 1994).
A dominant mode of inheritance with complete pene-
trance was assumed. A phenocopy rate of 0.1% was
assumed, since this is the incidence of congenital hearing
impairment in the United States. The phenotype of in-
dividuals <10 years old (V:1 and V:3 are 4 and 8 years
old, respectively) was assumed to be unknown, since
hearing loss begins at this age in this family.

Previous SIMLINK analysis had shown that the family
could generate a maximum LOD score of 4.033, with
a mean *= SD of 2.872 + 0.036 (Boehnke 1986; Lal-
wani et al. 1997). Genomic scanning at 10-cM intervals
identified on chromosome 22 a region with a LOD score
>3.0 and exclusion of the remainder of the genome; fine
mapping of the region by means of eight additional
markers in the linked region was performed. A maxi-
mum LOD score of 3.98 was obtained at D225283 (table
1). Haplotypes were then constructed to determine the
critical recombination events (fig. 1). The centromeric
recombination occurs in individual IV:6, between mark-
ers D225689 and D225280. The telomeric recombina-
tion occurs between markers D225282 and D225444 in
several individuals (III-4, IV-7, IV-8, and IV-11). These
critical crossovers define a linked region spanning a
16.89-22.97-cM interval, which includes D225280 near
the centromere and D22S5282 near the telomere. This
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Table 1

Two-Point LOD Scores Calculated across Linkage Region, with
Relative Genetic Distances, According to the Marshfield Medical
Research Foundation Genetic Map

LOD SCORE AT 0 = GENETIC
DISTANCE
MARKER 0 1 2 (cM)
D225420 —o .93 .86 4.06
GCT10C10 —oo 1.86 1.57 18.10
D22S315 —o0 1.90 1.47 21.47
D22S689 —oo 2.04 1.76 28.57
D22S280 3.22 2.55 1.84 31.30
D22S281 3.22 2.93 2.39 31.84
D22S691 2.87 2.26 1.59 32.39
D22S685 2.16 1.72 1.26 32.39
D22S683 3.53 2.81 2.03 36.22
D22S277 3.52 2.89 2.21 36.22
D22S283 3.98 3.26 2.49 38.62
D225426 3.78 3.06 2.28 41.42
D22S692 1.91 1.48 1.02 41.42
IL2RB 3.30 2.94 2.39 42.81
D22S1045 3.33 2.65 1.92 42.81
D225445 2.06 1.79 1.44 45.82
D225423 1.14 .88 .63 46.42
D22S5282 2.99 2.27 1.50 48.19
D22S444 —o —1.44 -.30 51.54
D22S274 —o0 -1.57 -.51 51.54

region corresponds to the cytogenetic bands 22q12.2-
22q13.3.

Two individuals, V:1 and V:3, who are <10 years old,
were classified as unknown and therefore did not con-
tribute to the LOD score. Individual V:1 does not carry
the disease haplotype, and her audiogram is completely
normal. Her brother, V:3, is 8 years old and currently
has a normal audiogram. However, he carries a portion
of the disease haplotype. If he does become affected
as he ages, the linked region will be defined by flank-
ing markers D22S689 and D225423, encompassing a
14.52-17.85-cM region. On the other hand, if he re-
mains unaffected, the linked region will be narrowed
to 1.77-5.72 cM, flanked by markers D225445 and
D225444.

Remarkable progress has been made in the identifi-
cation of genes responsible for nonsyndromic HHI. To
date, the locations of 18 autosomal dominant, 20 au-
tosomal recessive, and 8 X-linked hearing-loss genes
have been identified (Hereditary Hearing Loss). Here,
we report identification of DFNA17, a new locus for
autosomal dominant nonsyndromic HHI, on chromo-
some 22q12.2-q13.3. Typically, autosomal dominant
HHI is characterized by postlingual onset of hearing loss,
in contrast to the prelingual onset of deafness observed
in autosomal recessive cases. DFNA17 is characterized
by high-frequency hearing loss that begins at age 10
years, progresses to severe deafness by the 3d decade,
and involves all frequencies. This auditory phenotype is
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Figure 1 Haplotypes of chromosome 22. Haplotypes for individual III:2, the proband, are inferred from the haplotypes of his children
and wife. The disease haplotypes are boxed.
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also shared by other previously mapped autosomal dom-
inant nonsyndromic loci, including DFNA2, DFNAS,
DFNA7, and DFNA9. High-frequency hearing loss that
progresses to involve all frequencies is typical of pres-
bycusis, or hearing loss associated with aging. Consid-
ered the most common form of hearing impairment, age-
associated hearing impairment is thought to have a
multifactorial etiology, with heredity being an important
contributing factor. Therefore, the gene responsible for
DFNA17, as well as other nonsyndromic HHI genes
associated with progressive hearing loss, may provide
critical insights into an understanding of the molecular
pathophysiology of presbycusis.

The genes responsible for hearing impairment, at
seven of the autosomal dominant nonsyndromic HHI
loci, have been identified during the past 2 years (Lal-
wani and Castelein 1999). Mutations in an unconven-
tional myosin gene, myosin VIIA, have been demon-
strated to be responsible for DFNA11 (Liu et al. 1997).
In the same year, mutations in the diaphanous gene were
shown to be the pathogenic cause of DFNA1 (Lynch et
al. 1997). In the first 6 mo of 1998, mutations in con-
nexin 26, TECTA, and POU4F3 were found to be re-
sponsible for DFNA3, DFNA8/12, and DFNA1S5, re-
spectively (Denoyelle et al. 1998; Vahava et al. 1998;
Verhoeven et al. 1998). These genes have a wide variety
of functions, including intercellular communication via
gap-junction formation by connexin 26, regulation of
actin polymerization by diaphanous-gene, transcription
regulation by POU4F3, tectorial membrane constitution
by TECTA, and, finally, anchoring of the actin cytoskele-
ton by myosin VIIA. The wide range of functions sub-
served by the DFNA genes reflects the heterogeneity of
genes involved in nonsyndromic deafness (DFN).

Although the pace of the mapping and identification
of mutated genes that cause nonsyndromic HHI has been
rapid, their biologic role in the determination of cochlear
structure and function is largely unknown. The absence
of temporal-bone histologic data from families that have
been used for mapping studies has hindered our under-
standing of the effects of the mutant hearing genes. The
DFNA17 family was identified by histologic examina-
tion of the temporal bone of the proband, unlike most
families with HHI, who are identified initially by clinical
symptoms. Hearing impairment in the DFNA17 family
is associated with CSD, considered to be the most com-
mon cause of profound congenital hearing impairment,
accounting for 70% of cases with HHI. DFNA17 rep-
resents the first nonsyndromic gene for CSD. However,
CSD is likely genetically heterogeneous, because a va-
riety of clinical forms of HHI can lead to the common
histopathologic manifestation. DFNAY is the only other
DFN locus for which the human temporal-bone histo-
pathology has been reported. Affected individuals in this
family exhibit mucopolysaccharide depositions in the
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neural channels of the inner ear (Khetarpal et al. 1991;
Khetarpal 1993), and the gene for hearing impairment
in this family maps to 14q12-13 (Manolis et al. 1996).

DFNA17 maps to a relatively large genetic region of
16.89-22.97 cM, which is typical for mapping studies
that comprise families similar in size to the DFNA17
family. Unfortunately, this region is too large for posi-
tional cloning. Alternative approaches to identification
of the mutated gene include investigation of cloned genes
in the linked region and investigation of mouse models
of deafness mapped to syntenic regions. There are many
expressed sequence tags and genes that have been
mapped to 22q12.2-13.3 and that thus represent poten-
tial candidate genes for DFNA17 (Science/The Human
Gene Map). The history of the search for hearing-im-
pairment genes has demonstrated that it is difficult to
predict a candidate gene on the basis of its known or
putative function (e.g., PDS, a putative sulfate-trans-
porter gene, has been found to be associated with hear-
ing impairment). Therefore, it is difficult to select, for
mutation analysis, a candidate gene expressed in the
DFNA17 region.

A sample of the genes expressed in the linked region
includes those for metalloproteinase inhibitor 3 precur-
sors, sodium/glucose cotransporter 1, o-N-acetylgalac-
tosaminidase precursor, platelet-derived growth factor,
and nonmuscle myosin heavy-chain A (NMMHC-A).
Because mutations in two myosin genes are known to
cause hearing impairment (Liu et al. 1997; Wang et al.
1998), this class of genes deserves particular attention
as potential candidates. Thus the nonmuscle myosin
within the linked region represents a strong candidate
for DFENA17 (Saez et al. 1990; Simons et al. 1991;
Toothaker et al. 1991). Human NMMHC-A is a class
I conventional myosin, unlike unconventional myosins
VIIA and 15, which have been shown to cause hearing
impairment. However, NMMHC-A is not a traditional
striated-muscle-cell myosin, since it is expressed in the
rat intestine, testis, liver, lung, thymus, kidney, and heart
and not in striated muscle (Simons et al. 1991). Recently
it has been shown that NMMHC-A is also expressed in
the cochlea (authors’ unpublished data).

Another approach toward identification of the
DFNAT17 gene is to use mouse models of deafness that
map to the syntenic region in the mouse. Human myosin
VIIA and myosin 15 have been identified by initial char-
acterization of the homologous mouse models (Liu et al.
1997; Wang et al. 1998). The mouse syntenic region for
DFNA17 includes chromosomes 11 and 15. No mouse
deafness models have yet been reported that map to a
region syntenic with the human DFNA17. One mouse
deafness model—dominant spotting, or kit—displays
histology that resembles that of human CSD (Bock and
Steel 1983; Steel and Bock 1983), but the gene for this
mouse phenotype maps to the homologous region of
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human chromosome 4. Other animal models for CSD
include Dalmatian dogs, Hedlund white mink, and the
deaf white cat (Mair 1973; Steel and Bock 1983). How-
ever, none of these loci have been mapped, because of
the unavailability of genetic markers for these species.
Furthermore, unlike the family in the present study, these
animal models of CSD are associated with skin-pigment
abnormalities due to a lack of melanocytes.
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